详解光纤电流传感器原理
现代工业的高速发展,对电网的输送和检测提出了更高的要求,传统的高压大电流的测量手段将面临严峻的考验.随着光纤技术和材料科学的发展而发展起来的光纤电流传感系统,因具有很好的绝缘性和抗干扰能力,较高的测量精度,容易小型化,没有潜在的爆炸危险等一系列优越性,而受到人们的广泛重视.光纤电流传感器的主要原理是利用磁光晶体的法拉弟效应.根据of=VBl,通过对法拉弟旋转角0F的测量,可得到电流所产生的磁场强度,从而可以计算出电流大小.由于光纤具有抗电磁干扰能力强、绝缘性能好、信号衰减小的优点,因而在法拉弟电流传感器研究中,一般均采用光纤作为传输介质,其工作原理如下图:
光纤电流传感器示意图
激光束通过光纤,并经起偏器产生偏振光,经自聚焦透镜人射到磁光晶体:在电流产生的外磁场作用下,偏振面旋转θF角度;经过检偏器、光纤,进人信号检测系统,通过对θF的测量得到电流值.
当设置系统中两偏振器透光主轴的夹角为45°,经过传感系统后的出射光强为:
l=(Io/2)(1+sin2θF)
式中Io为入射光强.通过对出射光强的测量,就可以得出θF,从而可测出电流的大小.
详解光纤电流传感器原理
1、光纤电流传感器原理
Tip:当线偏振光在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转角度ψ与磁感应强度B和光穿越介质的长度l的乘积成正比,即ψ=V*B*l,比例系数V称为费尔德常数,与介质性质及光波频率有关。偏转方向取决于介质性质和磁场方向。上述现象称为法拉第效应。1845年由M.法拉第发现。
01、光纤电流传感器结构
图示:光纤电流传感器结构示意图
光纤电流传感器主要由传感头、输送与接收光纤、电子回路等三部分组成(如图所示)。传感头包含载流导体,绕于载流导体上的传感光纤,以及起偏镜、检偏镜等光学部件。电子回路则有光源、受光元件、信号处理电路等。从传感头有无电源的角度,可分为无源式和有源式两类。
02、无源式光纤电流互感器(OFCT)
OFCT主要利用了法拉第磁光效应。即磁场不能对自然光产生直接作用,但在光学各向同性透明介质中,外加磁场H可使在介质中沿磁场方向传播平面偏振光的偏振面发生旋转。这种现象被称为磁致旋光效应或法拉第效应。 当一束线性偏振光通过置于磁场中的法拉第旋光材料时,若磁场方向与光的传播方向相同,则光的偏振面将产生旋转。旋转角θ正比于磁场强度H沿偏振光通过材料路径的线积分:
式中,V为磁光材料的Verder常数,旋转角度θ与被测电流i成正比。利用检偏器将旋转角θ的变化,转换为输出光强度的变化,经光电变换及相应的信号处理,便可求得被测电流i,如图所示。
图示:光纤电流传感器传感头
03、有源式光纤电流传感器(HOCT)
这是一种基于传统 互感器传感原理,利用有源器件调制技术、以光纤为信号传输媒介,将高压侧转换得到的光信号送到低压侧解调处理,并得到被测电流信号的新型传感器。它既发挥了光纤系统的绝缘性能好、抗干扰能力强的优点明显降低了大电流高压互感器的体积、重量和制造成本,又利用了传统互感器原理技术成熟的优势,避免了纯光学互感器光路复杂、稳定性差等技术难点。 有源OFCT是通过一次采样传感器(空心线圈或小CT,电阻分流器) 将电流信号传递给发光元件而变成光信号,再由光纤传递到低电位侧、变换成电信号以后输出。高压侧电子器件供电方式有光供电、母线电流供电和太阳能电池供电等。目前应用最多的是采用空心线圈的有源式OFCT,其组成原理图如图所示。
图示:有源式光纤电流传感器构成原理图
空心线圈的截面为矩形或圆形,其感应电动势与线圈的尺寸、匝数以及一次电流有关,受外磁场和载流导体位置的影响小。因此,对空心线圈的输出电压积分即可还原为被测电流。