斯坦福AI技术利用卫星图像定位风险区域防范森林野火
目前,测试森林和灌丛地对野火敏感性的方法是通过人工收集树枝和树叶,并测试其含水量。这种方法准确可靠,但显然也相当耗费人力,而且难以规模化。幸运的是,研究人员最近有了其他的数据来源。欧空局的“哨兵 ”卫星和“陆地”卫星已经积累了大量的地球表面图像,经过仔细分析后,可以为评估野火风险提供第二种来源。
这并不是第一次尝试从轨道图像中进行这种观测,但之前的工作主要依赖于 "极度特定地点 "的视觉测量,这意味着分析方法因地点不同而有很大差异,其难于规模化。斯坦福团队利用的先进技术是“哨兵”卫星的 "合成孔径雷达",它可以穿透森林树荫并对下面的地表进行成像。
“我们最大的突破之一就是研究了一组较新的卫星,这些卫星使用的波长要长得多,这使得观测结果能够对森林树荫深处的水分敏感得多,直接代表燃料水分含量,”该论文的资深作者、斯坦福生态学家Alexandra Konings在一份新闻稿中说。
该团队将这些自2016年以来定期收集的新图像与美国林业局的人工测量结果一起“反馈”给了一个机器学习模型。这让模型能够“学习”图像中哪些特定的特征与地面实测数据相关联。然后,他们测试了所产生的人工智能,让它根据旧数据进行预测。它是准确的,而且对美国西部常见的生物群落之一、也是最容易受野火影响的生物群落之一灌丛地的预测最准确。
你可以在这张交互式地图上看到这个项目的结果,显示了模型对美国西部不同时期的干旱预测。这对消防员来说是对这一方法的验证-但同样的模型,在给出新的数据后,可以对即将到来的野火季做出预测,这可以帮助有关部门在控制性燃烧、危险区域和安全警告方面做出更多的决策。
日前,科学家的研究成果发表在《 Remote Sensing of Environment》期刊上。