改进峰值电流模式控制
品慧电子讯最糟糕的设计方案通常会在最低输入电压下产生最大输出功率。而在现实情况中,高输入线路的最大功率可能是最低输入线路电压所输送功率的两倍。这会迫使电源设计人员必须对功率级进行过量设计。本文将探讨输入功率增加的原因以及降低方法。此外,还将介绍一种可提升峰值电流模式控制性能的创新方法。
反向转换器变压器基本上由两个耦合电感器组成。当主开关接通期间,电能被储存在主耦合电感器中。由于变压器具有一次绕组和二次绕组配置,因而当主开关接通时,输出二极管 (D1) 会被反向偏置(图 1a–1b)。当主开关断开时,会将储存在主耦合电感器中的电能传送到输出耦合电感器中,作为驱动负载的能量。反向变压器能对输出电压进行升压或降压转换,并提供输入到输出的隔离。
图 1.1a) 主耦合电感器中存储的电能;1b)电能传送至二次绕组
峰值电流模式控制
出于对成本和简约性的考虑,反向转换器通用采用峰值电流模式控制,因而不能直接测量输出电流。当反向转换器出现过载故障时,输出电压就会下降。这样,反馈补偿电压就会升高至脉宽调制 (PWM) 控制器限流阀值之上,而且 PWM 会在逐脉冲过限流限制 (pulse-by-pulse current limit) 模式下运行,这时反馈电压不再控制 PWM 占空比。当峰值主电流超过 PWM 控制器限流比较器电压参考值 (VCS) 时,终止占空比。
峰值电流模式控制面临的挑战
当控制器处于逐脉冲过限流限制模式下时,主开关无法即时关闭。在 PWM 和功率级内存在传播延迟,其中包括控制器的前沿消隐 (LEB),在限流比较器、逻辑电路、栅极驱动器中的传播延迟,以及功率 MOSFET 的关闭延迟。传播延迟会导致峰值主电流因过冲而高于预期值。
方程式 1 计算实际峰值主电流:
(1)
计算出峰值主电流后,我们可用方程式 2 来计算输入功率:
(2)
这些传播延迟可以长达数百纳秒。我们能使用方程式 3 来计算主电流的斜率,其中 VIN 为整流直流线路电压,LP 为变压器的初级电感,dt 为总传播延迟。
(3)
若传播延迟 (方程式 3中的 dt)保持不变,那么当 VIN 增大时,主电流斜率也会相应增大。由于存在传播延迟,最大 VIN 下的峰值电流会因过冲而高于最小 VIN 下的峰值电流(图 2)。
图 2.传播延迟与 VIN 的关系
结果是输入和输出功率随着输入线路电压的增大而增大。可举例说明这一问题。峰值主电流(方程式 4)能根据如下系统要求得出:
(4)
对于峰值电流模式控制,我们能在计算峰值电流后确定电流感应电阻值大小(方程式 5)。
(5)
VCS 为 PWM 限流比较器电压参考 (0.5V)。最小输入电压下的峰值电流过冲是:
在最大输入线路电压下,峰值电流是(方程式 6):
(6)
推荐阅读:
如何在高效脉冲跳频模式下选择输出滤波电容器
电子系统的浪涌管理和系统保护
利用软齐纳钳位电路实现节能
Vishay高精度压力感测技术
集成隔离式电源、用于太阳能光伏转换器的完全隔离式电流检测电路