自动驾驶需要智能传感器系统
品慧电子讯在自动驾驶汽车领域中,大部分科技媒体报道所谈论的系统,对多数读者来说,感觉就像科幻故事。我们曾读过有关激光雷达传感器结合机器学习及人工智能在道路上识别物体的报道。也曾深感敬畏地研究过一些奇特的传感器阵列,它们结合了 GPS、地图软件,以及持续更新的交通路况系统,从而为汽车提供导航。但我们却很少听过通常独立执行单项任务,对自动驾驶车辆同样重要的智能传感器系统,例如压力传感器系统。
最初在车内部署安全气囊系统时,气囊通常只配备在驾驶座。汽车制造商很快决定同样要保护其他乘客,因此在副驾驶座以及后座区域(某些情况下)安装了安全气囊。起初当检测到碰撞时,安全气囊总是全力的展开。虽然气囊系统挽救了不少生命,但很快明显发现,如果坐在副驾驶座的小孩或婴儿被牢牢限制于座位上,气囊带来的伤害可能会超过其提供的保护。因此,副驾驶座开始加入能手动关闭气囊的设计。但是,驾驶员可能会忘了做这个必要的动作。而且一旦关上气囊,当乘客是成年人时,驾驶员可能会忘了把气囊打开。加入压力传感器系统。
在座椅上加入压力传感器系统后,整个气囊系统通过监控副驾驶座椅上的重量来判断是否关闭系统。这样的做法毋庸置疑,但是制造商很快发现,对于不同的重量,他们需要使用不同的力道来展开安全气囊。而且,座位上的重量来源可能只是一袋杂货。下一步是在展开安全气囊前先了解乘客的姿势。例如,如果乘客向仪表板倾斜,则安全气囊应以较小的力道展开。有很多方法可以做到这一点。有些公司提供压力传感器织物,该织物可以垫在座椅上并判断出乘客的姿势,甚至能分辨儿童座椅和真人。有些公司则提供能感应乘坐压力和乘坐位置的座位气囊。有些公司提供结合红外摄像机(因为必须在黑暗中工作)的座位传感器,能识别出身体的姿态。
随着时间的推移,压力传感器系统的电子器件,被集成至含有处理器的 IC 中,成本和尺寸都获得缩减。汽车公司现在可以提供一个连接到安全气囊装置的完整系统。虽然自动驾驶汽车已不再需要驾驶座安全气囊系统,但无庸置疑的是,还是需要尽可能在撞车时为乘客提供保护。
了解智能传感器系统
基本传感器系统包含一个可从外部模拟世界收集数据的传感设备。当进行完信号处理(例如放大、滤波或清除),会将生成的模拟数据发送到车内的另一个系统。
智能传感器系统增加了模数电路(A-D),可为运行软件的处理器提供信号,以便分析信号并做出决策(图 1)。有了处理器和软件,该系统便实现了智能化。然后,数字信号通常会连接到车内的汽车网络系统,其中传感器数据会进一步作为另一个系统的输入。
图 1:比较基本传感器系统与智能传感器系统。
以我们的智能安全气囊为例,智能压力传感器系统会实时收集有关乘客的数据,并使用嵌入式处理器上运行的软件对其进行分析。如果由于乘客状况的变化需要向安全气囊系统发送新警报,则智能传感器系统会通过汽车网络发送该警报。安全气囊系统会针对该警报打开或关闭安全气囊,或者修改充气设置来增加或减小安全气囊展开力道。
最后,为汽车市场开发智能传感器系统的各家公司通常会以定制 IC 为目标,进而降低成本、尺寸和功耗。智能传感器的典型特征是,传感设备使用 MEMS 来实现,而其余电路则是采用以 CMOS 技术实现的模拟/混合信号 (AMS) 设计。
衔接多个领域
从小型团队到大型公司,设计人员通过开发定制 IC,将新颖的智能传感器创意推向巿场。这些设计人员,正在重塑用以支持智能传感器系统的设计流程,他们心中怀有新的期望。他们通常在小型团队工作,需要集成的设计流程,以便在尽可能减少开支的同时快速、轻松地开发可正常使用的器件。他们必须能够开发适用系统验证的概念验证,才能利用汽车市场的巨大商机。设计团队需要使用集成式设计流程快速实现产品,从而快速开发出智能传感器系统所需的全部部件,包括:传感元件、模拟电路接口、模数转换逻辑和数字逻辑,而且所有部件的成本比传统 IC 和系统设计更低。
许多设计团队纷纷采用 Tanner 的集成式 IC 设计和验证解决方案来创建智能传感器系统。原因何在? 创建智能传感器系统会涉及多个设计领域,因此极具挑战性。但是,在同一硅片(图 2)上创建一个既有采用传统 CMOS IC 流程制作的电子器件,又有 MEMS 传感器的系统似乎并不现实。实际上,许多此类系统会在单个封装中集成多个芯片,将电子器件与 MEMS 设计分开。
图 2:CMOS 版图上的 MEMS 实例(来源:MEMSIC)。
Tanner AMS IC 设计流程(图 3)支持单芯片或多芯片技术,因而有助于成功实现器件的设计和验证。
图 3:衔接了 AMS 和 MEMS 设计的自上而下 Tanner 设计流程。
在单个芯片上设计电子器件和 MEMS 涉及到如下有趣之处(参见图 2):
• 电路图可以包含 IC 和 MEMS 器件。IC 器件使用 SPICE 模型进行建模,而 MEMS 器件则采用可直接在物理领域(如机械、静电、流体和磁)建模的行为模型(图 4)。
图 4:电子器件和 MEMS 位于同一电路图上。
• 为了支持初始 MEMS/IC 仿真,设计人员可以使用 System Model Builder 以及 SPICE 或 Verilog-A 中的解析方程来创建 MEMS 模型。结合 MEMS 仿真库,设计人员就可以在初始阶段就对整个设计是否符合预期予以验证。
• 利用 MEMS PCell 库,设计人员可以进行版图设计。此外,Library Palette(图 5)提供了许多 MEMS 器件的基本版图生成器,您可以将其用作设计的初始模型。
图 5:用于创建 MEMS 器件版图的 Library Palette。
• 然后,设计人员可以生成一个三维几何模型,以便进行查看、虚拟原型开发,以及导出到有限元分析 (FEA) 工具。
• Compact Model Builder 采用的是降阶建模技术,利用该工具,设计人员可以根据 FEA 结果创建行为模型,并将其用于最终系统级仿真中。
传统上,系统设计的 MEMS 部分从创建 MEMS 器件的三维模型开始,然后在第三方 FEA 工具中分析其物理特性,直到获得满意的结果。但是,设计人员需要二维掩膜才能制造 MEMS 器件。他们如何从三维模型中衍生出二维掩膜呢?他们遵循图 6 所示的 Tanner 以版图为导向的流程,由于三维实体模型是由版图和工艺步骤结合生成的,因此在器件制造过程中的每一步都是可视的,从而降低出错的风险。
图 6:以版图为导向的 MEMS 设计流程。
从 L-Edit 的二维掩膜版图开始创建器件。然后,3D Solid Modeler 会利用这些版图和一系列的三维制造工艺步骤,自动生成器件的三维实体模型。导出该三维模型并使用您喜欢的 FEA 工具进行三维分析,如发现任何问题,可以进行迭代。对二维掩膜版图进行适当的修改,然后重复流程。通过这个以版图为导向的设计流程,设计人员可以将精力集中在一个可以工作的 MEMS 器件上,因为他们直接设计用于生产制造的版图,而不是从三维模型进行逆向工作。
增加价值
设计人员使用 Tanner 定制 IC 流程将 MEMS 传感器集成到电子智能传感器系统中。但讽刺的是,将整个系统置于 IC 上将却导致价格降低。因此,团队正在寻找创造更高利润系统的方法。其中一种方法是传感器融合:开发一个包含多个传感器的系统,从而创造具有更高价值的产品。
以我们的压力传感器系统为例,设计人员可使用陀螺仪传感器将即将发生的翻车解决方案加入 IC 中,通过陀螺仪传感器将讯号传送至安全带系统,以便在发生事故时自动收紧安全带。此外,团队可以加入一个加速计传感器,这有助于在不依赖乘客姿势的条件下计算出安全气囊展开力道。通过在系统中融合三种传感器并加入软件实现智能化,公司就能以更高的价格将这个多维度的解决方案提供给汽车制造商。
重点回顾
阅读到有关自动驾驶的奇特系统虽然令人感到兴奋,但其实单一用途的智能传感器系统,才是真正实现自动驾驶的关键。这些系统通常采用在业界使用多年的专用传感器。创建智能传感器系统会涉及多个设计领域(模拟、数字、MEMS 和潜在 RF),因此极具挑战性。设计团队纷纷采用 Tanner 的集成式 IC 设计和验证解决方案来创建智能传感器系统,因为它是一个可用于衔接这些设计领域的完整解决方案,从而
可以成功实现产品开发。
推荐阅读:
为何基准电压噪声非常重要?
使用反射计芯片实施非接触式液位测量
使用高效率、高频率、低EMI DC/DC转换器降低对陶瓷电容的电源要求
轻松快速设计开关模式电源EMI滤波器
适用于微型电机驱动应用的快速反应、光学编码器反馈系统