可在强EMI下工作的高性能舰载绘图机电源设计
品慧电子讯为了满足高性能舰载绘图机性能要求,本文在一般稳压电源设计的基础上,主要从形成电磁干扰的3个要素,即干扰源,传播途径和受干扰设备着手,介绍了在电源的设计过程中,如何抑制干扰源,直接消除干扰原因,切断电磁干扰的途进;以及提高受干扰设备的抗扰能力,减低其对噪声的敏感度。高性能舰载绘图机要求在强电磁干扰(EMI)的环境下能正常工作,为此,绘图机的各个系统和子系统其性能指标必须满足国家有关舰载电子设备的标准。为了满足其性能要求,本文在一般稳压电源设计的基础上,主要从形成电磁干扰的3个要素,即干扰源,传播途径和受干扰设备着手,介绍了在电源的设计过程中,如何抑制干扰源,直接消除干扰原因,切断电磁干扰的途进;以及提高受干扰设备的抗扰能力,减低其对噪声的敏感度。 1基本技术比较 1.1性能指标 输入:220 V±10%,50 Hz。 输出电压/稳定工作电流:5 V/03 A±12 V/<±0.1 A 24 V/06 A 26~34 V(静态可调)/0.6 A峰值电流/稳定工作电流:>2 A 功率相关性:各路输出应能同时达到最大值。 EMI通过国家有关舰载电子设备标准测试。 1.2基本技术 电子设备在工作时,需要稳定的直流电压。电网一般是220 V,50 Hz,电压波动可达±10%,而且可能含有尖峰、浪涌或高频干扰。因此直流稳压电源需要完成以下任务: ①AC-DC高效转换; ②输出电压稳定; ③抑制电网上的干扰,较小的传导发射及电磁辐射。 从基本原理上,有线性稳压电源及开关电源。 1.3线性稳压电源 并联型线性稳压电源用并联稳压二极管吸收额外的电流,要求输入电源具有较高内阻,适用于负载电流较小的场合。效率低。串联型线性稳压电源在输入电源及负载之间串联电压调整管,将Vin-Vout转换为调整管上的发热。使用双极型晶体管时需要较大的压差(通常超过2 V),使用MOS管时可以在极小的压差(100 mV)下工作,但允许电流较小,且成本较高。 效率分析当输入电压范围为220 V±10%时,整流滤波后的电压为Vin±10%。串联型稳压电路要求Vin-10%-Vout>dV。dV为输入输出最小压差,对双极型调整管,dV>2 V。效率:

- 第一页:电源设计基本技术比较
- 第二页:高性能舰载绘图机电源设计方案
- 第三页:EMI设计及分析
(2)开关电源的缺点 由于调压器件工作于开关方式,因此dV,dI很大,容易产生较强的传导发射及辐射发射。 (3)输出端的滤波器件应严格筛选 电容器应具有较好的高频响应,较低的ESR。由于开关频率较高,因此无论输入输出端都有较强的高频差模传导发射。由于高低电位段具有不同的对地阻抗;而且地线网络对高频有较大阻抗,使两条线对大地形成不同的阻抗,即,对高频差模电压产生不同的相移,则这种差模电压会转化为共模电压。共模干扰一旦产生,就很难滤除。 综上所述,设计开关电源时,应尽量减少高频传导发射及磁场辐射。为了减少高频共模干扰,需注意合理布线,降低高频阻抗,减少环路面积。 开关电源通常要求输入、输出EMI滤波器。2基本方案 开关电源的优点是效率高、小巧、输入电压范围很宽,缺点是输出纹波大,容易产生共模干扰。 线性电源的缺点是效率低、笨重、输入电压范围较窄,优点是电路简单、输出纹波小,不产生辐射干扰。 大幅面绘图机具有较大体积及重量,因此对电源体积无特殊要求;使用220 V电源,波动一般不超过10%;要求的输出电压固定,且低输出电压的电流不是很大,因此可以使用线性电源。 根据以上考虑,拟采用线性电源为主、开关电源为辅的混合设计思路。 使用线性电源时,输入电压范围、输出电压调节及效率之间是相互矛盾的。因此本电源限定26~34 V为静态可调,输入电压波动范围为±10%。 2.15 V及±12 V 均为小功率,且电压接近,通常统一考虑。 ±12 V:一般使用MAX742/743实现,优点是:单片,且输入可以是3~11 V。若用7812/7912,则需额外的两个绕组,且效率较低。若电流小于±125 mA,则可以使用MAX743。 5 V:次级绕组+整流滤波+使用7805。可选的LDO:LT1763/500 mA,LT1129/700 mA,MAX603/500 mA。 2.224 V及30 V 主要功率集中在24 V和30 V,且二者电压、功率接近。方案: ①220VAC-24VDC;220VAC-30VDC可调:体积大,余量大,EMI大,似乎不合适。 ②分别设计次级绕组,再分别整流、滤波、串联稳压,似乎多余。 ③希望少用一个次级绕组,则至少有一路用开关电源(DC-DC变换器)实现。由于希望30 V可调,因此用DC-DC变换方法产生30 V较合适,不但高效,而且调压方便。缺点是:需用专用DC-DC模块,不适于单件生产DC-DC的输出是30 V(26~35 V),输入可以考虑: ①24 V:使用升压模块。缺点是Vin24 V(~30 V)24 V发热严重,效率较低。 ②Vin 24 V(~30 V):与输出电压重叠,难以使用开关电源,(在小功率场合,可以使用:升压变换+LDO)。③Vin5 V(8~10 V):易选用升压模块。缺点是与5 V共用输入。但由于有5 V稳压器,因此不会影响5 V。 综上所述,24 V方案:次级绕组+整流+滤波+集成三端稳压器。 30 V方案1:次级绕组+整流滤波+集成三端稳压器。多了一个次级绕组及整流桥,但各路独立,易于维护,负荷均匀。适于不调压方案。 30V方案2:Vin5(8-10V)+DC-DC升压。适于调压方案。缺点:升压模块较为专用。<上一页123下一页>
- 第一页:电源设计基本技术比较
- 第二页:高性能舰载绘图机电源设计方案
- 第三页:EMI设计及分析
3 EMI设计 EMI设计方案如图1所示。


- 第一页:电源设计基本技术比较
- 第二页:高性能舰载绘图机电源设计方案
- 第三页:EMI设计及分析