详述工业电机控制系统
品慧电子讯电机消耗的能量几乎占全球电力的50%。随着能源成本的持续上涨,业内开始采用微处理器调速驱动器替代效率低下的固定速率电机和驱动器,这种新型电机控制技术与传统驱动器相比,能够使能耗平均降低30%以上。
引言
电机消耗的能量几乎占全球电力的50%。随着能源成本的持续上涨,业内开始采用微处理器调速驱动器替代效率低下的固定速率电机和驱动器,这种新型电机控制技术与传统驱动器相比,能够使能耗平均降低30%以上。虽然调速电机提高了系统本身的成本,但是,考虑到电机能够节省的能量以及所增加的功能,只需短短几年即可挽回最初的投资成本。
通用电机设计
直流电机、无刷直流和交流感应电机是当今工业应用设计中最常见的电机。
直流电机:低成本和高精度驱动性能
直流电机是最先投入使用的电机类型,目前仍然以低开发成本和卓越的驱动性能得到普遍应用。在最简单的直流电机中,定子(即电机固定部件)为永久磁铁,转子(即电机的转动部件)上缠绕了电枢绕组,电枢绕组连接到机械换向开关,该开关控制绕组电流的导通和关闭。磁铁建立的磁通量与电枢电流相互作用,产生电磁扭矩,从而使电机做功。
电机速度通过调整电枢绕组的直流电压进行控制。根据具体应用的不同,可以采用全桥、半桥或一个简单的降压转换器驱动电枢绕组。这些转换器的开关实现脉宽调制(PWM),从而获得相应的电压。
Maxim的高边或桥式驱动器IC,如:MAX15024/ MAX15025,可以用来驱动全桥或半桥电路的FET。直流电机还广泛用于对速度、精度要求很高的伺服系统。为了满足速度和精度的要求,基于微处理器的闭环控制和转子位置非常关键。Maxim的MAX9641霍尔传感器能够用于提供转子的位置信息。
交流感应电机:简单、坚固耐用
交流感应电机以简单、坚固耐用而著称,被广泛用于工业领域。最简单的交流电机就是一个变压器,原级电压连接到交流电压源,次级短路承载感应电流。“感应”电机的名称源于“感应次级电流”。定子载有一个三相绕组,转子设计简单,通常被称为“鼠笼”,其中,两端的铜或铝棒通过铸铝环短路。由于没有转子绕组和碳刷,这种电机的设计非常可靠。工作在60Hz电压时,感应电机恒速运转。
然而,当采用电源电路和基于微处理器的系统时,可以控制电机速度变化。变速驱动器由逆变器、信号调理器和基于微处理器的控制器组成。逆变器采用三个半桥,顶部和底部切换以互补方式控制。Maxim提供多种半桥驱动器,如MAX15024/MAX15025,可独立控制顶部和底部FET。
精确测量三相电机电流、转子位置及转速是对感应电机进行高效闭环控制的必要条件。Maxim提供多款高边和低边电流放大器、霍尔传感器以及同步采样ADC,能够在恶劣环境下精确测量这些参数。微处理器利用电流和位置数据产生三相桥路的逻辑信号。一种常见的闭环控制技术称为矢量控制,它消除了磁场电流矢量和定子磁通量之间的耦合,从而能够独立控制,提供更快的瞬态响应。
无刷直流电机:高可靠性和高输出功率
无刷直流(BLDC)电机既没有换向器也没有碳刷,相对于直流电机而言需要更少的维护。相对于感应电机或直流电机而言,同等规格的无刷直流电机能提供更大的输出功率。BLDC电机的定子与感应电机的定子非常相似。但是,BLDC电机的转子可以采用不同形式,当然,都属于永久磁铁。气隙磁通量由磁铁固定,不受转子电流的影响。BLDC电机还需要一定形式的转子位置检测。
通常利用定子中嵌入的霍尔器件检测转子位置。当转子的磁极经过霍尔传感器附近时,会有一个信号指示通过的是北极还是南极。Maxim提供多款霍尔传感器,如MAX9641,这些器件集成了两个霍尔传感器和数字逻辑电路,可提供磁场位置、方向输出,从而简化设计并降低系统成本。
传感器、信号转换和数据接口的重要性
在电机控制环路中,有几种类型的传感器提供反馈信息。这些传感器还用于检测可能损坏系统的故障状态,从而提高系统可靠性。下面介绍传感器在电机控制中的作用,特别是电流检测放大器、霍尔传感器和可变磁阻(VR)传感器。其它内容包括:利用高速ADC监测、控制多通道电流和电压,高精度电机控制所需的编码器数据接口等。
电流监测
电流是用于监控并反馈给电机控制环路的常见信号。利用电流检测放大器可以轻松地精确监测系统流入、流出的电流。采用电流检测放大器可以省去传感器,因为需要测量的是电信号本身。电流检测放大器能够检测短路和瞬态状况,并监测电源和电池反接故障。
电流测量
电流测量有很多渠道,但截至目前为止,最常见的方案是采用检流电阻进行测量。这种方法的基本原理是:利用基于运放的差分放大器对检流电阻两端的电压进行放大,然后测量放大后的电压信号。传统设计中通常采用分立器件。但分立方案存在一些缺点,例如:需要匹配电阻、具有较差的温漂特性,并占用较大面积。幸运的是,这些缺点可以通过在设计中使用集成电流检测放大器得以解决。
放大器不仅测量电流,还可以检测电流方向,具有较宽的共模范围,能够提供高精度测量。电流测量可以采用低边检测(检测电阻与接地通路串联),也可以采用高边检测(检测电阻与火线串联)。低边检测中,电路的输入共模电压较低,输出电压以地为参考,但低边电阻在接地通路增加了所不希望的外部电阻。高边检测中,负载接地,但高边电阻必须承受相当大的共模信号。高边检测能够对故障状态进行监测,例如,电机外壳或绕组对地短路。
相关阅读:
马达控制:加速和减速的设计关键
基于电机控制的高效家电设计实现
电机控制实时性能与效率的智能优化方案