你好!欢迎来到深圳市品慧电子有限公司!
语言
当前位置:首页 >> 技术中心 >> 互连技术 >> 连接器塑料破裂的分析

连接器塑料破裂的分析


中心议题:

  • 一般塑料爆裂的二种情况
  • 弯曲正应力强度条件
  • 剪切力强度条件
  • 一些连接器塑料破裂不易爆裂的原因

连接器中的塑料破裂一般有以下两种情况:

1、此时可改用结合强度较强的材料,如PA。

2、塑料与端子干涉太大而破裂。当塑料与结合线强度不足而破裂。如LCP 结晶速度太快,结合线强度较低,容易产生破裂,端子干涉太大超过材料的弯曲强度时,塑料发生破裂,此时可减小干涉量。塑料破裂的本质是其实际弯曲强度超过了其许用弯曲强度。下面从材料力学的角度试着对其详细分析。

根据材料力学,当L/B>5 时,梁能否正常工作主要取决于梁的正应力强度条件;当L/B<5时,应同时满足正应力强度条件和剪切力强度条件。连接器中塑料与端子配合时,其力学模型是截面为矩形的固定梁,且一般L/B<5,故应同时满足正应力强度条件和剪切力强度条件。

一、弯曲正应力强度条件如下

σmax=Mmax/W=(0.25*F*L)/(b*h²/6)=(3* F*L)/(2* b*h²)<=[σ] (1)

由f=(F*L³)/(48*E*I)得

F=(4* E* f *b* h³)/ L³ (2)

将式(2)代入式(1),则得

σmax=(6* f*E *h)/ L²<=[σ] (3)

其中,f 表示最大挠度;

h 表示材料厚度;

l 表示材料长度;

[σ]表示许用弯曲强度

二、剪切力强度条件

根据材料力学,矩形截面的剪切力强度条件是:

τmax =(Fmax*S)/(I*b)

=(0.5F*b*0.5h*0.25h)/(b*h³/12*b)

=3F/(4*b*h²)<=[τ] (4)

其中,S 表示中性轴以下(或以上)的截面面积对中性轴的静矩。

将式(2)代入式(4),则得

τmax =3* E*h*f/ L³<=[τ] (5)

三、问题

1. 根据式(3)、(5),在相同干涉量的情况下,塑料材厚h 越薄,最大正应力或最大剪切力越小,产品越安全,但这与实际情况不符合。

2. 将式(3)两边同时除以E,则得在相同长度、相同厚度、相同干涉量的情况下,不同材质的[σ]/E 若越大,则该种材料越不易破裂。若以上推导正确,如《连接器塑料特性举例》所列数据,PA6T 与PBT、PA66 应该一样不易破裂,但实际PA6T 却易破裂,此问题该如何解释?

针对以上两问题,我请教了荷兰化工(DSM)戴嘉庆先生,他的解释如下:

1、薄的壁厚与厚的壁厚,在端子干涉量相同时,其实际最大挠度 f 并不相同!由于塑料比金属强度硬度低, 其表面靠近金属处产生塑性变形,从而挠度变低,因而影响到σmax 降低。而厚的塑料壁厚比薄的塑料壁厚易于产生塑性变形 (可理解为所吸收的能量), 因而不易破裂。

2、在所述前提下,不同材质的[σ]/E 若越大,则该种材料越不易破裂,推导正确。PA6T所引用的数据为PA6T 在良好的成形条件下得到标准的测试条,然后再在测试条上测量得到的数据。而由于实际在PA6T 成形连接器时,因对加工条件要求高 (如模温等),较难得到理想的如物性表所示的强度韧性, 所以较易破裂。

关键字:连接器 破裂 测量  本文链接:http://www.cntronics.com/public/art/artinfo/id/80009760

相关文章

    用户评论

    发评论送积分,参与就有奖励!

    发表评论

    评论内容:发表评论不能请不要超过250字;发表评论请自觉遵守互联网相关政策法规。

    深圳市品慧电子有限公司