MEMS光开关的优势有发展动态简介
中心议题:
- MEMS光开关的简介
- MEMS光开关的优势
- MEMS光开关发展动态
- 不会产生机械疲劳
- 插入损耗,串扰小
- 采用上下折叠方式、左右移动方式或旋转方式来实现开关的导通和断开功能
微电子机械系统(MEMS)就是将几何尺寸或操作尺寸仅在微米、亚微米甚至纳米量级的微机电装置(如微机构、微驱动器等)与控制电路高度集成在硅基或非硅基材料上的一个非常小的空间里,构成一个机电一体化的器件或系统。MEMS器件具有体积小、重量轻、能耗低、惯性小、响应时间短,可把多个不同功能、不同敏感方向或致动方向的微机构大规模地集成在一起,并且可以通过微电铸的方法进行批量复制和大规模生产。
MEMS加工技术主要分为三类:非硅基材料上以X光深度光刻的LIGA技术;硅基或非硅基材料上的精密机械刻划技术;在半导体集成电路技术之上发展起来的硅MEMS加工技术。
硅MEMS加工技术最早出现于二十世纪六十年代,所采用的主要技术是单晶硅各向异性腐蚀技术(体硅微机械),其代表产品是硅压力传感器。八十年代美国率先开发出以多晶硅为结构层、二氧化硅为牺牲层的表面牺牲层技术(表面微机械),并开发出微硅静电马达,使得MEMS技术得到质的飞跃发展。表面微机械加工技术与半导体集成电路技术最为相近,其主要特点是在薄膜淀积的基础上,利用光刻、刻蚀等集成电路常用工艺制备微机械结构,最终利用选择腐蚀技术释放结构单元,获得可微动结构。
进入九十年代,随着深槽刻蚀技术、键合技术及其它关键技术的成功应用,体硅微机械又得到了飞速发展,并发展出多种体硅工艺与表面微机械工艺相互结合的新工艺。特别是开发出利用感应耦合等离子体(ICP)和侧壁钝化(SPP)的先进硅刻蚀工艺(ASE),可对硅材料进行很大深宽比的三维微加工,其加工厚度可达几百微米,侧壁垂直度可接近九十度。这使得MEMS技术不仅在传感器领域的应用得到迅速发展,而且在光纤通信、微型化学分析系统、DNA分析及微型机器人等领域的应用研究也得到空前发展。
光纤通信在实现了高速、大容量点对点的传输后,上世纪末已进入了光纤网络时代。MEMS在光纤通信领域的应用范围十分宽广,几乎所有光网络中的各个组成单元都能采用MEMS制作器件,并由此产生了一个新名词:微光电子机械系统(MOEMS),它是机、电、光、磁、化学、自动控制、传感技术与信息处理等多种技术的综合。综观光纤通信器件的发展历程,可以看出器件的发展趋势为:块状堆集型®光纤型®MOEMS型®集成型。前两种已经形成产业化,并正在向小型化方向发展。
在目前集成型器件还不十分成熟的情况下,MEMS(或MOEMS)型光器件已出现了商业化的产品。利用MEMS技术可以制作光纤通信传输网中的许多器件,如:光分插复用器(OADM)、光交叉连接开关矩阵(OXC-AS)、光调制器、光滤波器、波分复用解复用器、可调谐微型垂直腔表面发射半导体激光器(VCSEL)、可变光衰减器、增益均衡器及用于光路分配和耦合的微透镜阵列等多种微型化光器件。
MEMS光开关的优势
MEMS技术在光纤通信网络中的一个重要应用就是利用微动微镜制作光开关矩阵,微动微镜可以采用上下折叠方式、左右移动方式或旋转方式来实现开关的导通和断开功能。MEMS技术制作的光开关是将机械结构、微触动器和微光元件在同一衬底上集成,结构紧凑、重量轻,易于扩展。它比机械式光开关和波导型光开关具有很好的性能,如:低插损、小串音、高消光比、重复性好、响应速度适中,与波长、偏振、速率及调制方式无关,寿命长、可靠性高,并可扩展成大规模光交叉连接开关矩阵。