浅谈电子制造过程中的静电及静电防护
中心议题:
- 浅谈电子制造过程中的静电及静电防护
- 了解静电的危害
- 利用静电消除器
- 利用防静电运输车
引言
ESD(Electrostatic Discharge)即静电释放:两个带不同静电电平的物体,通过直接接触或静电电场的作用会使两物体的静电电荷发生位移,当静电电场达到一定能量,之间的介质被击穿而产生放电,这就是ESD的全过程。由于生活中静电无处不在,所以ESD也经常发生。我们可以按以下描述简单判断ESD的强弱,当放电电压低于3 kV时,ESD过程会发生但我们不会感觉到,电压大于3 kV时,人体有轻微麻麻的感觉,当电压大于6 kV时,我们会听到"劈啪"的放电声,而当电压大于8 kV时,同时还会伴随快速的电弧火花出现。
随着科学技术的飞速发展,电子、通信、航天航空等高新产业的迅速崛起,尤其是电子仪器仪表和设备等电子产品日趋小型化、多功能及智能化。高密度集成电路已成为电子工业对上述要求中不可缺少的器件。这种器件具有线间距短、线细、集成度高、运算速度快、低功率和输入阻抗高的特点,因而导致这类器件对静电越来越敏感。静电放电是导致元器件击穿危害和对电子设备的运行产生干扰的主要原因。在电子产品的生产中,从元器件的预处理、安装、焊接、清洗、至单板测试、总测、直到包装、储存、发送等工序,都可能产生对器件的静电放电击穿危害。因此,静电防护显得越来越重要。静电作为一种自然现象,不让它产生几乎是不可能的,但是,把它的存在控制在危险的水平下,使其造成的损失尽可能减小,则是可以做得到的。有效地进行静电防护与控制,依赖于对静电现象的认识和对其发生、存在、消除的控制;依赖于掌握和了解静电与环境条件的关联性和静电发生的规律。 2 静电的产生
在电子组装工业中,产生静电的主要途径为:摩擦、感应和传导。
2.1摩擦
在日常生活中,任何两个不同材质的物体接触后再分离,即可产生静电,而产生静电的最普通方法,就是摩擦生电。材料的绝缘性越好,越容易产生摩擦生电。另外,任何两种不同物质的物体接触后再分离,也能产生静电。2.2感应
针对导电材料而言,因电子能在它的表面自由流动,如将其置于一电场中,由于同性相斥,异性相吸,正负电子就会转移。
2.3传导
针对导电材料而言,因电子能在它的表面自由流动,如与带电物体接触,将发生电荷转移。
3 静电对电子产品的危害
静电对电子产品的危害有多种形式,并具有自身的特点。
3.1.静电危害的形式
静电的基本物理特性为:吸引或排斥,与大地有电位差,会产生放电电流。这三种特性能对电子元器件产生三种影响:(1)静电吸附灰尘,降低元器件绝缘电阻(缩短寿命)。
(2)静电释放(ESD)破坏,造成电子元件不能工作。表1列出了一些常见电子元器件所能承受静电破坏的静电电压,从表中可以看出大部分器件的静电破坏电压都在几百至几千伏,而在干燥的环境中人活动所产生的静电可达几千伏到几万伏。图2是一个CMOS器件和一个双极型器件在受到ESD损伤后芯片内部的相貌像;
(3)静电放电产生的电磁场幅度很大(达几百伏/米)频谱极宽(从几十兆到几千兆),对电子产品造成干扰甚至损坏(电磁干扰)。
这3种形式对元器件造成的损伤,既可能是永久性的(如功能丧失,不能恢复),也可能是暂时性的(如静电放电产生的干扰使功能暂时丧失);既可能是突发失效,也可能是潜在失效。其中静电释放(ESD)事件是造成元器件损伤最常见和最主要的原因。