基于PCB的电磁兼容的设计
中心议题:
- PCB中常见的电磁干扰方式
- PCB的电磁兼容设计
解决方案:
- PCB板的选取
- PCB板的布局、布线设计及电子元器件布局
- PCB板的静电防护设计
PCB电磁兼容设计在于减少对外电磁辐射和提高抗电磁干扰的能力,合理的布局和布线是设计的关键所在。本文介绍PCB中常见的电磁干扰及PCB的电磁兼容设计,这些方法与技巧有利于提高高速PCB的EMC特性。
1 PCB中常见的电磁干扰
解决PCB设计中的电磁兼容性问题由主动减小和被动补偿两种途径,为此必须对电磁干扰的干扰源和传播途径进行分析。通常PCB设计中存在的电磁干扰有:传导干扰、串音干扰以及辐射干扰。
1.1 传导干扰
传导干扰主要通过导线耦合及共模阻抗耦合来影响其它电路。例如噪音通过电源电路进入某一系统,所有使用该电源的电路就会受到影响。图1表示的是噪音通过共模阻抗耦合,电路1与电路2共同使用一根导线获取电源电压和接地回路,如果电路1的电压突然需要升高,那么电路2的电压必将因为共用电源以及两回路之间的阻抗而降低。
图1 噪音通过共模阻抗耦合
1.2 串音干扰
串音干扰是一个信号线路干扰另一邻近的信号路径。它通常发生在邻近的电路和导体上,用电路和导体的互容和互感来表征。例如,PCB上某一带状线上载有低电平信号,当平行布线长度超过10cm时,就会产生串音干扰。由于串音可以由电场通过互容、磁场通过互感引起,所以考虑PCB带状线上的串音问题时,最主要的问题是确定电场、磁场耦合哪个是主要的因素。
1.3 辐射干扰
辐射干扰是由于空间电磁波的辐射而引入的干扰。PCB中的辐射干扰主要是电缆和内部走线间的共模电流辐射干扰。当电磁波辐射到传输线上时,将出现场到线的耦合问题。沿线引起的分布小电压源可分解为共模和差模分量。共模电流指两导线上振幅相差很小而相位相同的电流,差模电流则是两导线上振幅相等而相位相反的电流。
2 PCB的电磁兼容设计
随着PCB板的电子元器件和线路的密集度不断增加,为了提高系统的可靠性和稳定性,必须采取相应的措施,使PCB板的设计满足电磁兼容要求,提高系统的抗干扰性能。
2.1 PCB板的选取
在PCB板设计中,相近传输线上的信号之间由于电磁场的相互耦合而发生串扰,因此在进行PCB的电磁兼容设计时,首先考虑PCB的尺寸,PCB尺寸过大,印制线过长,阻抗必然增加,抗噪声能力下降,成本也会增加;PCB尺寸过小,邻近传输线之间容易发生串扰,而且散热性能不好。
根据电源、地的种类、信号线的密集程度、信号频率、特殊布线要求的信号数量、周边要素、成本价格等方面的综合因素来确定PCB板的层数。要满足EMC的严格指标并且考虑制造成本,适当增加地平面是PCB的EMC设计最好的方法之一。对电源层而言,一般通过内电层分割能满足多种电源的需要,但若需要多种电源供电,且互相交错,则必须考虑采用两层或两层以上的电源平面。对信号层而言,除了考虑信号线的走线密集度外,从EMC的角度,还需要考虑关键信号的屏蔽或隔离,以此确定是否增加相应层数。
2.2 PCB板的布局设计
PCB的布局通常应遵循以下原则:
(1)尽量缩短高频元器件之间的连线,减少他们的分布参数和相互之间的电磁干扰。容易受干扰的元件不能靠得太近,输入输出应尽量远离。
(2)某些元器件或导线之间可能有较高的电压,应加大他们之间的距离,以免放电引出意外短路。
(3)发热量大的器件应为散热片留出空间,甚至应将其装在整机的底版上,以利于散热。热敏元件应远离发热元件。
(4)按照电路的流程安排各功能单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。
(5)以每个功能模块的核心元件为中心,围绕它进行布局,尽量减少和缩短各元器件之间的引线和连接长度。
(6)综合考虑各元件之间的分布参数。尽可能使元器件平行排列,这样不仅有利于增强抗干扰能力,而且外观美观,易于批量生产。