中国新能源汽车高等级材料获突破,汽车强量化这件事,新材料能讲多少故事?
9月1日消息,由我国自主研发建设的高等级无取向电工钢生产线已于 8 月 31 日在河北迁安投产,新材料将大幅提升新能源汽车电机功率密度和电机效率。
无取向电工钢,顾名思义,其磁性具有各向同性性(也叫各向同性电工钢),广泛应用于制造各类电机、电子变压器铁心。在我国,无取向电工钢的使用量约占整个电工钢使用量的 90%。
1882~1900 年,英国人哈德菲尔特(R.A.Hadfield)研究发现,在钢中添加一定量的硅可以大大降低铁损,这就是无取向电工钢的由来。目前业界认为,电工钢是驱动现代工业的核心材料。
改革开放 40 年来,通过学习国外先进技术,消化、掌握国外先进专利技术,我国电 工钢产业不断发展壮大。40 年来,我们开发了一系列具有自主知识产权的产品,完善生 产工艺,对设备不断进行改进,经过长期努力,中国电工钢生产技术得到了快速的发展,电工钢产量居世界第
据介绍,上述生产线投产的两款新能源汽车用电工钢产品可作为新能源汽车驱动电机的核心功能材料,能够满足驱动电机更高效率的需求,电机的效率能提升 0.8% 以上。
如果按照每天每辆电动汽车跑 50 公里计算,2000 万辆汽车每天就能省 500 万度电。官方表示,这条生产线投产以后,我们会开辟一个新的工艺路径,引领新能源汽车材料行业。
一、汽车轻量化的新材料
20 世纪70 年代的发生的石油危机,推动了国外汽车轻量化材料技术的发展。发达国家在研究如何解决能源短缺和环境恶化的过程中,制定了一些非常严格的强制性法律和制度,目的是为了降低车辆的燃油消耗,减少汽车的尾气排放。因此,汽车厂商为了满足政策法规的要求,投入了大量的人力及物力用于研发节能环保、轻量化、可回收的材料。此外,各国政府为企业、大学以及研究机构提供了大量的资金支持,用于研发汽车轻量化材料,从而进一步促进了汽车轻量化的发展。目前,我国汽车材料产业已经粗具规模,大量自主研发的新材料以及新技术已经成功实现商业化。
1、车用高强度钢材料
1.新一代先进高强度钢(板、管材)
目前的高强度钢(比如双相钢、低合金高强度钢、TRP 钢和复相钢)的强度均在400~1200MPa 左右。而通过对化学成分的优化设计以及对冶炼技术的改进,可以减少或取消贵重合金元素的用量,开发出强度更高,且其他性能(塑性、韧性、成形性)优良的高强度钢。比如,高成形性的品种、高弹性模量的品种和成形后强化非烘烤硬化新品种等。
2.先进的成形技术
目前高强度钢的成形工艺主要有深冲、延展、拉伸翻边、弯曲等,由于这些工艺本身的局限性,先进成形技术的研发显得十分迫切。未来成形技术研发方向主要有:管件液压成形、板件液压成形、辊压成形、电磁成形与气体热成形等; 此外先进高强度钢的焊接高强度钢与其他合金连接的激光拼焊技术以及开发新的连接技术,也是未来研发的重点。
3.成形过程的CAE 分析
高强度钢在汽车工业中的应用遇到的难题是“成形”。由于强度的升高,必然造成成形困难且成形后可能发生开裂和回弹,用计算机进行成形的CAE 分析,对成形过程的变形路径进行优化,以保证成形而避免开裂;对回弹进行模拟分析,预测回弹,进而进行回弹补偿,可大大提高和改善高强度钢的成形性,从而大大节约模具调试时间和修模工作量。
4.进一步研发超细晶粒钢
超细晶粒钢是一种新的高强度钢板材料。这样的钢材料的主要经济指标得到了进一步提高,与现有的钢材相比较而言,其强度和韧性均超过了现有钢材的一倍以上。新型超细晶粒钢主要类型分为400MPa 级和800MPa级,具备了高均匀度、超细晶粒以及高洁净度等三大主要特征。
2、铝合金材料的应用进展
最近几年来,全球性的能源和环境问题愈发严峻,面对这样的形势,很多汽车制造商就要在降低车辆自重和降低燃油消耗方面加大投入和研发力度,降低因为汽车生产过程多带来的环境损害后果。
在材料属性方面,硅合金多具有共晶和亚共晶结构,也有一部分的汽车零件仍然会使用传统的过共晶铝硅合金,但是这种材料的铸造性能和机加工性能不够优越,近些年来多采用的是低硅或中硅亚共晶铝硅合金材料。再者不同用途的汽车零部件,所采用的铝合金材料特点也存在差异。铝铸造产品多应用于转向机构和制动器零部件中,铝铸造零部件可以承受大于10MPa 以上的压力,其耐腐蚀性和强度也较高,要不断研究开发出力学性能高、耐腐蚀强度高的铝合金材料。研发具有良好铸造性能的Al-Cu 系耐热铝合金以满足制动器耐热要求;研发具有良好耐磨性的Al-Si-Fe-Mn-Cr 合金以满足自动变速箱离合器零件、冷气压缩机汽缸、换挡拨叉件的要求。此外,应用于车体与悬挂系统的部件,除了具备高强度外,还要求开发具备能量吸收与良好的变形特性,Al-Si-Mg 系非热处理型高强高韧性铝合金是未来研发方向之一
3、镁合金材料的应用进展
镁及镁合金材料是一种较为理想的汽车轻量化材料,但存在一些必须解决的问题,如材料性能随着温度升高而降低问题和腐蚀问题等。因此需要进一步研究开发新的镁合金材料及其成形制造技术。
镁合金材料的成形方法分为铸造加工成形和塑性成形,当前主要运用的是铸造成形方法,且压铸方法是镁合金铸造成形方法中应用最广泛的。最近发展起来的镁合金压铸新技术包括充氧压铸和真空压铸,充氧压铸在生产汽车镁合金零部件上的应用较广泛,真空压铸可生产出AM60B 镁合金汽车方向盘和轮毂。
镁合金成形以铸造工艺为主,但铸件的缺陷限制了镁合金性能的提高,局限了镁合金的广泛应用。镁合金使用塑性成形方法,可有效地消减铸件缺陷的影响,通常采用热处理强化和形变强化可明显地提高合金的性能,但由于镁的密排六方结构,变形难度比钢、铝和铜等要大。如果直接运用铝合金已有的塑性成形方法,往往会使得镁合金材料的成品率很低,使塑性加工成形成本过高,影响了镁合金在各领域的应用。因此,加快发展镁合金塑性成形方法也是研究的热点和发展的趋势。
4、碳纤维增强树脂基复合材料
碳纤维增强聚合物基复合材料具有独特的性能优势,是汽车新材料领域备受关注。相较于其他汽车材料而言其优势有以下几个方面:
1.力学性能优异
汽车上使用的碳纤维增强树脂基复合材料密度仅为1.5~2.0g/cm3,只达到普通碳钢密度的20~25%,质量是同体积铝合金的约2/3,但是碳纤维复合材料的综合力学性能要高于传统的金属材料,抗拉强度达到了钢材的3~4 倍。CFRP 的疲劳强度是抗拉强占比达到70%~80%。另外,CFRP 的振动阻尼特性也要优于轻金属,例如通常轻合金发生震动后需要9s 震动才能停止,而CFRP 振动2s便可以停止。
2.一体化制造
汽车结构发展的另外一种趋势就是模块化与整体化。采用复合材料能够在其成型过程中制成形状各异的曲面,能够完成汽车零部件的一体化制造。采用一体化成型制造一方面可以大幅度减少汽车零部件数量和零部件之间的连接工序,另一方面也使得零件的生产周期大幅缩短。
3.吸能抗冲击性强
CFRP 具有的粘弹性也相当出色,同时碳纤维和基体之间会因为局部的微小摩擦而产生界面应力。在粘弹性与界面摩擦力共同作用下,CFRP 汽车制件能够表现出优越的吸能抗冲击能力。再者,经过特殊制作的碳纤维复合材料,其具有的碰撞吸能结构可以在剧烈碰撞状态下碎裂成很小的碎片,使得撞击能量得以最大化的分散,这种材料的能量吸收能高出普通金属材料的5 倍左右,极大提升了汽车的安全性,保障乘车人员的生命安全。
4.耐腐蚀性好
碳纤维丝束和树脂材料共同组成了碳纤维增强聚合物基复合材料,其耐酸碱性能也较为优异,用其制造的汽车零部件无需进行表面防腐处理,其耐候性及耐老化性极好,寿命是普通钢材的约2 ~3 倍。
二、新能源上游产业议价能力更强
新材料领域是新能源行业未来发展的一个重要方向,随着技术的突飞猛进及政策支持,国内新能源新材料行业有望迎来加速成长期。
2022年以来,锂电材料业绩增长,锂钴资源大幅提升,锂电设备持续受益扩产。由于下游需求快速增长,上游锂电池资源和部分中游材料在供需格局偏紧的情况下价格快速上涨,呈现量价齐升态势,产品涨价增加了锂电池资源与材料板块上市公司业绩弹性。
随着上海疫情进入尾声,复产复工正当时,汽车工业在5月下旬开始复工复产明显提速。根据Wind数据显示,截至5月22日,上海、江苏的零部件整体复工率约50%,电车零部件复工率普遍超过70%,瓶颈零件产量提升。
叠加以后汽车销售的刺激政策,包括汽车下乡、补贴、购置税延期和地方补贴终端销售等政策,下半年将迎来需求大幅提升的状态。同时,汽车、集成电路、化工等重要领域需求回暖将带动上游新材料需求边际复苏,看好产业景气度持续性强、估值调整后安全边际高的新能源及上游新材料企业。
双碳目标下,清洁能源节能制备的制造、氢能、生物质能、光伏技术、储能等绿色科技的应用均有长期发展空间,与此相关的化工上游原材料行业在需求增长的推动下,将迎来景气向上的时机。
文章来源: IT之家,投资泳者FRM,前沿材料PLUS