绕开EUV光刻机?美国造出0.7nm芯片:下单6个月可交货
众所周知,目前5nm及以下的尖端半导体制程必须要用到价格极其高昂的EUV光刻机,ASML是全球唯一的供应商。而更为尖端2nm制程的则需要用到ASML新一代0.55 NA EUV光刻机,售价或高达4亿美元。英特尔正计划利用新一代0.55 NA EUV光刻机来开发其Intel 20A(2nm)及18A(1.8nm)制程。但是,要想实现1nm以下的更先进的制程,即便是ASML新一代0.55 NA EUV光刻机也束手无策。
近日,美国一家旨在开发和商业化原子精密制造 (APM) 技术的公司Zyvex宣布推出了全球分辨率最高的亚纳米分辨率光刻系统“ZyvexLitho1”,其并没有采用EUV光刻技术,而是基于STM扫描隧道显微镜,使用的是电子束光刻(EBL)方式,可以制造出具有0.768nm线宽(相当于2个硅原子的宽度)的芯片,精度远超EUV光刻机,是当前制造精度最高的光刻系统。
这个光刻机制造出来的芯片主要是用于量子计算机,可以制造出高精度的固态量子器件,以及纳米器件及材料,对量子计算机来说精度非常重要。
Zyvex是致力于生产原子级精密制造工具的纳米技术公司。这个产品是在DARPA(国防高级研究计划局)、陆军研究办公室、能源部先进制造办公室和德克萨斯大学达拉斯分校的Reza Moheimani教授的支持下完成的,被国际自动控制联合会授予工业成就奖。
氢去钝化光刻(HDL):实现更高的分辨率和精度
氢去钝化光刻(HDL)是电子束光刻(EBL)的一种形式,它通过非常简单的仪器实现原子分辨率,并使用能量非常低的电子。它使用量子物理学有效地聚焦低能电子和振动加热方法,以产生高度非线性(多电子)的曝光机制。HDL使用附着在硅表面的单层H原子作为非常薄的抗蚀剂层,并使用电子刺激解吸在抗蚀剂中创建图案。
传统EBL使用大型昂贵的电子光学系统和非常高的能量(200Kev)来实现小光斑尺寸;但是高能电子(获得小光斑尺寸所必需的)分散在传统EBL使用的聚合物抗蚀剂中,并分散沉积的能量,从而形成更大的结构。HDL实现了比传统EBL更高的分辨率和精度。
数据显示,光刻胶中的沉积能量不会下降到光束中心的10%,直到径向距离约为4nm。
使用HDL,实验团队能够暴露比EBL的10%阈值半径小>10倍的单个原子。这个小得多的曝光区域令人惊讶,因为HDL不使用光学器件,只是将钨金属尖端放置在H钝化硅样品上方约1nm处。人们会期望,如果没有光学器件来聚焦来自尖端的电子,那么曝光区域会更大。
距H钝化硅表面约1nm的W扫描隧穿显微镜(STM)尖端
电子似乎不太可能只遵循暴露单个H原子所需的实心箭头路径。为了解决这个谜团,必须了解电子实际上不是从尖端发射(在成像和原子精密光刻模式下),而是从样品到尖端(在成像模式下)或从尖端到样品(在光刻模式下)模式。使用具有无限平坦和导电衬底的简单模型、STM尖端顶点处单个W原子的发射以及简化的隧穿电流模型,我们将看到电流随着隧穿距离呈指数下降。
ZyvexLitho1的五大特色功能
ZyvexLitho1 系统基于 Zyvex Labs 自 2007 年以来一直在完善的扫描隧道显微镜 (STM) 技术,配备了低噪声、低延迟的20位数字控制系统,允许用户为固态量子器件和其他纳米器件和材料创建原子精度的图案。ZyvexLitho1套件还包括配置用于构建量子器件的 ScientaOmicron 超高真空 STM(扫描隧穿显微镜)。这也使得ZyvexLitho1系统具备其他任何商业扫描隧道显微镜不具备的功能和自动化功能,包括:能够实现无失真成像、自适应电流反馈回路、自动晶格对准、数字矢量光刻、自动化脚本和内置计量。
现在下单,6个月后即可交货
需要强调的是,ZvyvexLitho1系统并不是一款实验室原型产品,而是一款已经可以商用的产品。根据Zyvex Labs官网介绍,目前其正在接受 ZvyvexLitho1 系统的订单,交货时间约为六个月。
据悉,ZvyvexLitho1将会有标准版和高级版两个不同版本,具体售价未知。
EBL能取代传统光刻吗?
所谓光刻,是芯片制造中的一种图案化工艺。该过程涉及将图案从光掩模转移到基板。这主要是使用配备有光学光源的步进器和扫描仪来完成的,这也是我们现在主流的芯片制造方式,大家熟悉的EUV和DUV就是使用这种方式的。
其他形式的光刻包括直写电子束(direct-write e-beam)和纳米压印( nanoimprint)。在研发中还有几种下一代光刻(NGL)技术——如多光束电子束和定向自组装(DSA)。
据美国NIST方面介绍,电子束光刻允许精细控制纳米结构特征,这些特征构成多种器件技术的基础。让10 nm 的横向分辨率、1 nm 的放置精度和 1 mm 的图案化区域都是可能的。然而,实现这些性能指标取决于许多特定于样品的相互依赖的因素——图案定义和断裂、基板和掩模材料、曝光前和曝光后工艺、对准特征定义——以及关键的细节光刻系统的操作。
NIST表示,作为一项核心能力,其开发的工艺处于或接近传统电子束光刻技术的极限,以推进各个领域的纳米级设备和测量科学,例如:用于精确计时的芯片级频率梳;用于波长和量子频率转换的非线性集成光学;用于传感、转换和非线性动力学研究的片上腔光机械和微/纳米机电系统;具有用于量子信息的非线性和量子发射器光源的量子光子集成电路;从紫外到红外的超表面,用于捕获和探测原子和离子、偏振测量、成像和时空超快激光脉冲整形;用于像差校正的光学显微镜标准。
但正如很多报道中所说,其吞吐和准确度,限制了EBL的发展。根据eBeam Initiative的一份调查显示,使用类似电子书光刻这样的直写设备制作一份掩膜写入时间大概在2.5到13个小时不等,其平均数在6.8个小时。根据该组织的报告,对于复杂掩膜而言,最长写入时间在14到60个小时。一般来说,制造商们对于写入时间超过24个小时的掩膜设计方案会比较头疼。因为过长的写入时间就意味着更高的成本,更长的处理时间和良率问题。
总结来说,虽然EBL电子束光刻机的精度可以轻松超过EUV光刻机,但是,这种技术的缺点也很明显,那就是产量很低,无法大规模制造芯片,只适合制作那些小批量的高精度芯片或者器件,指望它们取代EUV光刻机也不现实。
更多信息可以来这里获取==>>电子技术应用-AET<<