基于NTC热敏电阻的LED闪光基板的温度检测
【导读】NTC热敏电阻是一种热阻元件,其阻值会随温度升高而急剧下降。利用这一特性,它除了可以被设计为温度传感器以外,还被用作温度保护元件以防止电路过热。通过将NTC热敏电阻安装在靠近热源的位置上,可以准确检测热源温度。但由于基板尺寸和PCB布线等限制,有时也需要将其安装在远离热源的位置。
NTC热敏电阻是一种热阻元件,其阻值会随温度升高而急剧下降。利用这一特性,它除了可以被设计为温度传感器以外,还被用作温度保护元件以防止电路过热。通过将NTC热敏电阻安装在靠近热源的位置上,可以准确检测热源温度。但由于基板尺寸和PCB布线等限制,有时也需要将其安装在远离热源的位置。
本期推文中,我们假设了一种LED和NTC热敏电阻安装位置不同而导致的测量温差的情况,并确认了基板厚度的影响,然后对其结果进行说明。
通过将NTC热敏电阻安装在靠近热源的位置,可实现精确的热源温度检测。但由于基板尺寸和PCB布线等限制,有时也需要将其安装在远离热源的位置。我们使用发热模拟软件,假设了将LED闪烁灯基板的LED作为热源来确认由于LED和NTC热敏电阻安装位置不同而导致的温差,此外还确认基板厚度的影响。
测试所用的基板是基于智能手机LED闪光基板的模型所设计的。各项尺寸如下:
■ 基板尺寸:6.5 x 5.0mm
■ LED尺寸:1.0 x 1.0mm
■ LED输出:30mW x 4个
图1:基板信息
对于LED闪烁灯基板,正面的GND布线通过Via连接到背面,其他部分使用FR4基板材料,而基板越厚使用的基材越多。基板厚度有0.4mm和1.6mm两个等级。
图2:模拟条件1【基板厚度】
在LED闪烁灯基板的中央区域安装了四个1mm形状的LED,在远离LED的位置上配置0402mm形状的NTC热敏电阻。NTC热敏电阻的安装位置距离LED为0.25mm、1.00mm和1.75mm。
图3:模拟条件2【NTC热敏电阻安装位置】
发热模拟时的测温点设为LED表面和NTC热敏电阻表面四处。
图4:测温点
■ LED表面温度:显示92.5℃
■ NTC热敏电阻表面温度:显示距离LED越远温度越低
■ NTC热敏电阻表面温度相对于LED表面温度产生了温差
■ 基板表面存在温度分布,导体图案与基板材料之间也产生了温差
图5:各个测温点的LED & NTC热敏电阻表面温度模拟结果-1
■ LED表面温度:显示92.8℃
■ NTC热敏电阻表面温度:显示距离热源LED越远温度越低
■ NTC热敏电阻表面温度相对于LED表面温度产生了温差
■ 基板表面存在温度分布,导体图案与基板材料之间也产生了温差
图6:各个测温点的LED & NTC热敏电阻表面温度模拟结果-2
NTC热敏电阻安装位置导致的温差:由于FR4的导热系数低至0.25W/mk,LED的热量难以向周围传递,导致LED与周围产生温差。距离热源LED越远,LED和NTC热敏电阻之间的温差越大。
图7:NTC热敏电阻安装位置导致的温差
确认基板厚度的影响:当基板厚度较厚时,NTC热敏电阻不容易受到转移到背面GND的热量的影响,因此NTC热敏电阻与热源LED的温差变大。
图8:LED和NTC热敏电阻的表面温差 (Δ温度)
△温度:其显示了LED表面温度和NTC热敏电阻表面温度之间的温差。示例:83.1-92.8=-9.7℃
基板材质:使用FR4时,由于热源的热量难以向周围传递,导致热源与周围产生温差。此外,距离热源越远,热源与NTC安装位置的温差越大,在设计温度检测电路时需要考虑到这些现象。
元件选择步骤
想要进行温度监测使LED表面温度不超过90℃时:
1) 确认基板上的发热源(LED)位置。
2) 确定NTC热敏电阻的安装位置。
3) 确认LED表面温度和NTC安装位置的温度。
(假设LED温度为90℃时NTC温度为80℃的情况)
4) 选择合适的检测电路,使80℃时的输出特性高度准确。
■检测电路
■输出电压(Vout)特性
NTC温度:确认80℃时的输出电压(Vout)。在这种情况下,若Vout显示高于3.5V,则LED温度保持在90℃以下。
基板材质:使用FR4时,由于热源的热量难以向周围传递,导致热源与周围产生温差。此外,距离热源越远,热源与NTC安装位置的温差越大。通过确认NTC安装位置的温度并选择检测电路以使输出特性高度准确,可以构建使用NTC热敏电阻的最佳电路。
以下是TDK用于一般LED闪光灯(消费设备)和LED头灯(车载设备)的NTC热敏电阻推荐型号:
此外,选择检测电路和NTC热敏电阻时,您还可以使用TDK的基于Web的NTC热敏电阻模拟工具。
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。
推荐阅读:
敏芯股份:用MEMS为数字世界安上感知触角
加快UWB应用开发的UWB模块
具备限流功能的单通道负载开关
降低运动控制应用中可闻噪声的三种出色方式
SiC MOSFET的设计挑战——如何平衡性能与可靠性