用“甜甜圈裱花”的“舞蹈”寻找极轻粒子
利用超大质量黑洞寻找极轻粒子
2019年,结合地球各地望远镜的观测结果,EHT合作组公布了一张分辨率极高的超大质量黑洞M87?的照片,照片展示了一个中心为黑色的明亮环状结构,看上去有点像甜甜圈。外圈明亮的圆环源于黑洞周围吸积流的辐射,“甜甜圈”中心的黑色是黑洞吞噬了中心区域光线的结果。
2021年,EHT合作组更新了同一张照片,在原有基础上显示了更精细的结构——表示线偏振方向(EVPA)的纹理线,将“甜甜圈”变成了一个“裱花”的图样。这些照片给出了黑洞存在的最直接证据,并揭示了黑洞外的磁场。
如何把超大质量黑洞转换成极轻粒子的探测器?这可以追溯到1969年英国物理学家罗杰·彭罗斯提出的一个物理过程:自旋为整数的玻色粒子可以从旋转黑洞中提取能量,形成围绕黑洞的高密度玻色云块。玻色子提取黑洞旋转能的过程被称为超辐射。
为了使这一过程发生,玻色子的康普顿波长需要与黑洞视界大小相当。因此,超大质量黑洞就成了极轻粒子的天然探测器。
在超越粒子物理学标准模型预言的各种极轻粒子中,轴子是最有希望的候选者之一。同时,轴子也是一个完美的冷暗物质候选者。长久以来,寻找轴子是粒子物理学的首要任务之一。
轴子让黑洞“裱花”按特定模式“舞蹈”
理论预期,轴子和光子之间存在微弱的相互作用,其中一种效果就是线偏振光的偏振面在轴子场中会发生偏转,类似磁场中的法拉第旋转效应。而黑洞周围如果形成致密的轴子云将显著地放大这个效应。
中国科学院理论物理研究所研究员舒菁说:“轴子的存在能使线偏振的方向产生额外的周期性旋转,周期在5—20天。偏振角的变化表现为沿着明亮的光环方向传播的波,这时‘裱花’图案的‘舞蹈’会出现一个特定的模式,而不是如同一个醉汉般随机行走。”
科研人员可以通过比较黑洞附近偏振的分布及其随时间的演化,来确认是否存在轴子引起的“裱花”图案的“舞蹈”。
EHT的偏振测量提供了4天的EVPA的高分辨率图像,这正是研究人员搜索轴子所需要的信息。
舒菁表示,利用“裱花”图样4天变化的不同情况,我们可以使轴子和光子之间的耦合突破到以前未曾探索的区域。“‘跳舞’是我们预言的轴子存在的信号形式,如果没有看到‘跳舞’的形式,就可以限制轴子的参数区间,比过去的限制都要强。”
论文作者之一、研究团队成员陈一帆说:“为了降低黑洞吸积流的湍流变化的不确定度,我们引入了一种新的分析策略,将两个连续天之间的差异作为观测量来限制轴子引起的EVPA变化。未来,通过更详细的数据,特别是更多的连续时间观测和更好的空间分辨率的数据,我们可以探测到更大的参数空间。”(实习记者 娄玉琳)