离子液体有望在下一代固态锂金属电池中大放异彩
锂离子电池已经变得无处不在,在我们的智能手机、笔记本电脑、电动工具和电动汽车中随处可见。但是,当我们寻找具有更高能量密度的更好的解决方案时,科学家们已经转向了固态锂金属电池。锂金属电池比锂离子电池具有更高的能量密度。它们被认为是电池的未来,可以为大规模的车辆和电网提供动力。
然而,技术问题使固态锂金属电池无法进入环境条件比较苛刻的的应用。其中一个主要问题是电极和固体电解质之间的界面设计。锂离子电池中的电解质通常是液体,高度易燃,构成安全隐患。这就是为什么人们一直在尝试使用固态电解质来代替。然而,电极和固体电解质之间很难实现良好的接触。任何一方的表面如果产生粗糙的情况都会导致高界面电阻,这困扰着电池的性能。已经有一些工作在研究固体电解质的设计,但阴极设计仍然是一个开放的问题。
由东京都立大学Kiyoshi Kanamura教授领导的一个团队一直在开发新的方法,以改善固态锂金属电池中阴极和固态电解质之间的接触。现在,他们已经成功地创造了一种准固态的氧化钴锂(LiCoO2)阴极,其中含有室温的离子液体。离子液体由正离子和负离子组成,它们还可以传输离子。重要的是,它们可以填补阴极/固体电解质界面的微小空隙。随着空隙的填充,界面阻力明显下降。
该团队的方法也带来了其他好处。离子液体不仅具有离子导电性,而且几乎不挥发且通常不易燃。它们对形成阴极的阻碍也很小,使制造过程几乎不受影响。该团队展示了用他们的准固态阴极和固体"石榴石"电解质(指其结构)制成的原型电池,该电池显示出良好的可充电性,在60℃的高温下进行100次充/放电循环后,容量保持率达到80%。进一步的研究还发现,最佳的离子液体含量为11wt%。
但问题仍然存在,比如现在急需找到一种更好的、不容易降解的离子液体。然而,该团队的新范式为固态金属锂电池的研究提供了令人兴奋的新方向,并有可能将其带出实验室,进入我们的生活。